Surname	Centre Number	Candidate Number
First name(s)		2

GCE A LEVEL

A400U30-1

2 hours

WEDNESDAY, 19 JUNE 2024 - MORNING

BIOLOGY - A level component 3

Requirements for Life

		For Examiner's use only		
		Question	Maximum Mark	Mark Awarded
		1.	11	
		2.	16	
	Coetion A	3.	22	
	Section A	4.	10	
		5.	12	
		6.	9	
	Section B	Option	20	
		Total	100	

ADDITIONAL MATERIALS

A calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** questions.

Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

This paper is in 2 sections, **A** and **B**.

Section A: 80 marks. Answer all questions. You are advised to spend about 1 hour 35 minutes on

this section.

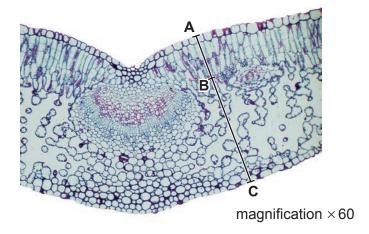
Section B: Options; 20 marks. Answer one option only. You are advised to spend about 25

minutes on this section.

The number of marks is given in brackets at the end of each question or part-question.

The assessment of the quality of extended response (QER) will take place in question 6.

The quality of written communication will affect the awarding of marks.



SECTION A

Answer all questions.

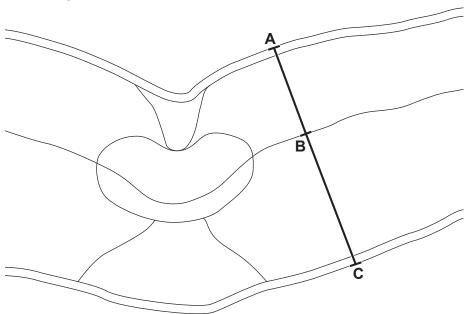

1. (a) **Image 1.1** is a photomicrograph of part of a transverse section of a privet (*Ligustrum*) leaf.

Image 1.1

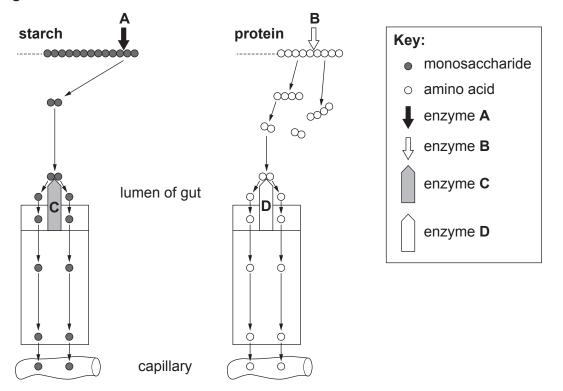
A student drew a low power plan of **Image 1.1** as shown in **Image 1.2**.

Image 1.2

(i) Add labels to Image 1.2 to identify three tissue layers that contain photosynthesising cells.

[3]

	(ii) The	proportions of (A–C : A–B) in Image 1.1 have a ratio of 3.5 : 1 .	only
	I.	Calculate the ratio of (A–C : A–B) in Image 1.2 .	[1]
		Ratio =	. : 1
	II.	Tissue layer A–B has been drawn too thick.	
		Calculate how thick tissue A–B should have been drawn in Image 1.2 to make the proportion of the plan correct.	[2]
		Thickness =	mm
(b)		synthesise effectively, a leaf is adapted for the absorption of light energy and on of gases.	t
		adaptations of a leaf for the absorption of light and two adaptations for the iffusion of gases.	[4]
	Adaptatio	ns for the absorption of light.	
	1		
	2		
	·	ns for the efficient diffusion of gases.	
	2		
(c)		ular bundles in a leaf form a highly branched network. Two functions of the bundles are transport of:	
		er and mineral ions in the xylem	
		ars and other organic materials in the phloem. other function of the vascular bundles.	[1]
		20.0	11
•••••			


Turn over. (A400U30-1) © WJEC CBAC Ltd.

A400U301 03

[3]

2. The efficient digestion of molecules in food substances requires many different enzymes and different conditions. **Image 2.1** is a schematic diagram representing the breakdown and absorption of starch and protein.

Image 2.1

(a) (i) I. Use **Image 2.1** to complete **Table 2.2**.

Table 2.2

Label	Enzyme name	Product
Α		
В		
С		

II. Name the bond hydrolysed by enzyme **D**. [1]

© WJEC CBAC Ltd.

(A400U30-1)

	A400U301 05

	(ii)	Many digestive enzymes are secreted into the lumen of the gut. Describe the exact position of enzymes C and D in Image 2.1 and suggest the advantage of the position of these enzymes.	[2]
	•••••		
	•••••		
(b)		en vinegar (ethanoic acid) is added to potato chips, enzyme $\bf A$ (produced in the th) is unable to break down the starch they contain. Suggest the reason for this.	[1]
	•••••		
	•••••		

QUESTION CONTINUED OVERLEAF

(c) The structure of the gut of a cow, horse and dog is shown in **Image 2.3** (not drawn to scale). Cows and horses are herbivores and dogs are carnivores.

Image 2.3

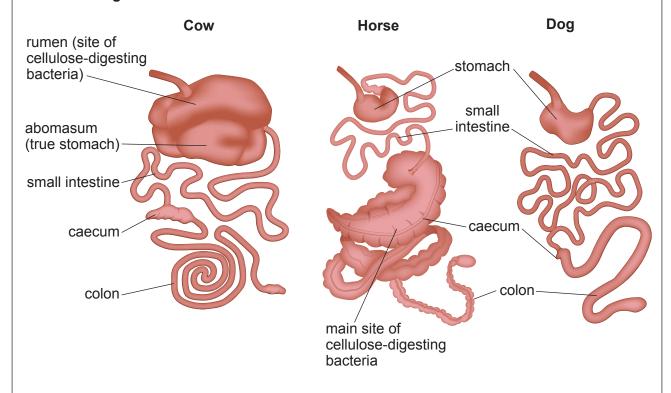
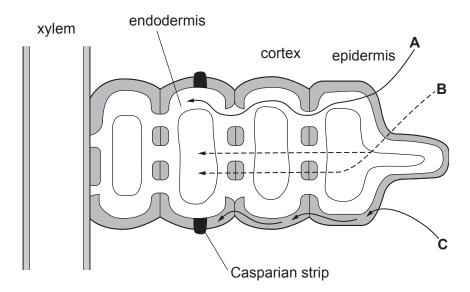


Table 2.4

	Rela	tive volume of entire g	ut/%
Part of gut	Cow	Horse	Dog
rumen	62.8	_	-
stomach	8	8.5	62.3
small intestine	18.5	30.2	23.3
caecum	2.8	15.9	1.3
colon	7.9	45.4	13.1

© WJEC CBAC Ltd.

	Difference in relative volume	How this reflects their diet	
(ii)	Cows are classified as mammals and so the With reference to their diet, explain why the proportionally larger at birth than in an adu	e abomasum of a newborn calf is	[2
(ii)	With reference to their diet, explain why the	e abomasum of a newborn calf is	[2
(ii) 	With reference to their diet, explain why the	e abomasum of a newborn calf is all cow.	[]


© WJEC CBAC Ltd. (A400U30-1) Turn over.

A400U301 07

[2]

3. Water lost by transpiration from the leaves of plants results in a flow of water across the roots, as shown in **Image 3.1**.

Image 3.1

(a)	(i)	Use the information in Image 3.1 to name the three pathways A, B and C by
		which water moves from the soil to the endodermis.

Α	
В	

C

	Pathway A	Pathway B
••••		
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	
(iii) Sta	ate the function of the Casparian strip.	

© WJEC CBAC Ltd. (A400U30-1)

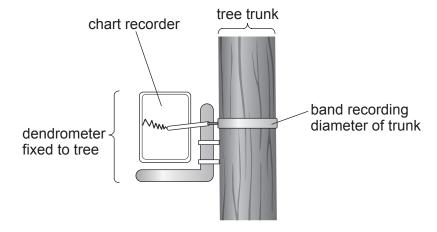
Turn over.

(b) Water molecules in the xylem are attracted to each other by cohesion and to the inside of the xylem vessels by adhesion. The rate of water movement affects the diameter of the xylem vessels.

The variation in the diameter of xylem vessels over a 24-hour period is shown in **Graph 3.2**.

Graph 3.2

Use the information above to predict and explain what would happen to the trunk diameter between 6:00 hours and 12:00 hours.]



© WJEC CBAC Ltd.

(A400U30-1)

The diameter of the trunk was measured using a dendrometer. This is shown in Image 3.3. The band detects changes in the diameter of the trunk. This is then recorded on a chart on a rotating drum.

Image 3.3

(ii) To increase confidence in results, the diameter of ten different tree trunks in one area of woodland was measured over the same time period.

Suggest three other factors that would need to be controlled when obtaining

these readir	[3]	

© WJEC CBAC Ltd. (A400U30-1) Turn over.

(c) Maize is an agricultural crop which is grown throughout the world. **Table 3.4** shows data relating to the growing of maize.

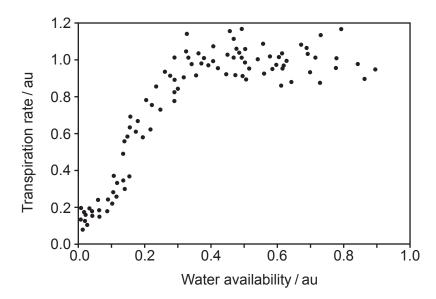
Table 3.4

Volume of water lost by one maize plant in a growing season.	200 dm ³
Length of growing season	80 days
Density of maize plants	30 000 acre ⁻¹

1 acre = $4047 \,\text{m}^2$

(i)	Use the information given in Table 3.4 to calculate the volume of water lost	
	through transpiration by 1 m ² of maize per day during the growing season.	[3]

Volume of water lost = $dm^3m^{-2} day^{-1}$



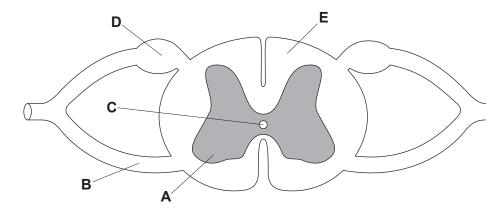
© WJEC CBAC Ltd.

PMT

The effect of soil water availability on the transpiration rate of five plants of the same species is shown in **Graph 3.5**.

Graph 3.5

(ii)	Describe the relationship shown in Graph 3.5 between transpiration rate and availability of water in the soil.	[2]


(iii) Draw **one** conclusion about the confidence in the data shown in **Graph 3.5** at lower water availability. Explain your answer. [2]

.....

22

4. Image 4.1 shows a transverse section through the spinal cord.

Image 4.1

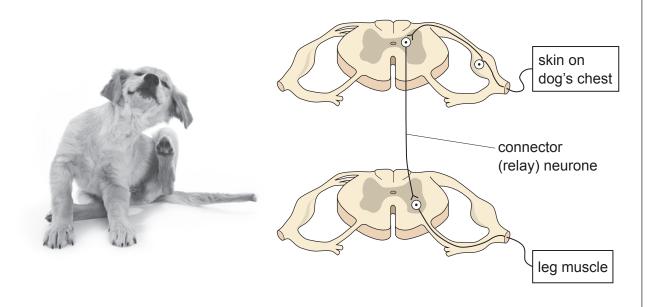
(a) Name the labelled structures **A–E** shown in **Image 4.1**. [3]

Α	

ח			

F	

0	
C	


© WJEC CBAC Ltd. (A400U30-1)

Examiner only

Sections through the spinal cord at the level of stimulation and at the level of the hind leg are shown in **Image 4.3**.

Image 4.2

Image 4.3

(i) Complete Image 4.3 to label the sensory and motor neurones involved in the dog scratch reflex.
 Draw arrows on all the neurones involved to show the direction of the impulse. [3]

(ii) Use the information in **Images 4.2** and **4.3** to explain why the axon of the connector (relay) neurone is so long in this reflex arc. [2]

(c) In a dog, the nerve impulse takes 6 milliseconds to travel 0.3 m.
Calculate the rate of transmission of the nerve impulse.

Give your answer in metres per second.

[2]

Rate = ms⁻¹

10

© WJEC CBAC Ltd. (A400U30-1)

Turn over.

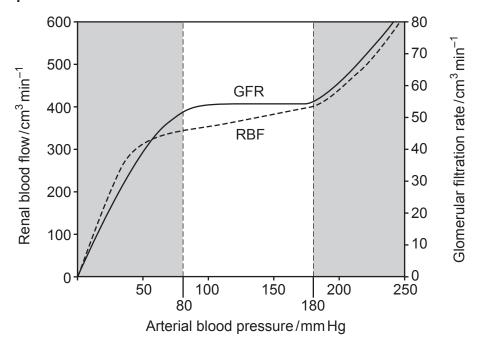
BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

(A400U30-1)

$\overline{}$	
0	
က	
\supset	
0	
0	
4	7


5.	The k		es play an important role in homeostasis through osmoregulation and the excretion
			e of urine produced can be affected by both the glomerular filtration rate and the on of filtrate.
	(a)	vaso	ontrol the glomerular filtration rate, a protein is released by the body which causes econstriction of the afferent arterioles. This protein functions as both an enzyme and rmone.
		(i)	Describe what is meant by the term enzyme and explain why the tertiary structure of the enzyme is important to the function of the enzyme. [2]
		•••••	
		(ii)	Describe what is meant by the term hormone and explain why the tertiary structure of this protein is important in its function as a hormone. [2]
		•••••	

© WJEC CBAC Ltd. (A400U30-1) Turn over.

(b) The relationship between arterial blood pressure, renal blood flow (RBF) (volume of blood entering kidney) and the glomerular filtration rate (GFR) is shown in **Graph 5**.

Graph 5

RBF = renal blood flow per minute in cm³ GFR = Volume of glomerular filtrate produced per minute in cm³

The normal range of arterial blood pressure in a healthy human adult is between 80 mm Hg at rest to 180 mm Hg during exercise.

Use **Graph 5** and the information given to answer the following questions:

(i)	Explain how increasing RBF results in an increase in GFR as arterial blood pressure increases from 0 to 80 mm Hg.	[1]
(ii)	Use your knowledge of vasoconstriction in the afferent arterioles to describe a explain the GFR between 80 and 180 mm Hg.	nd [2]

© WJEC CBAC Ltd.

PMT

	(iii) 	Above 180 mm Hg GFR increases dramatically. Suggest how the increase in GFR demonstrates that the kidneys are acting homeostatically to reduce blood pressure.	[1]
(c)	Des	diuretic hormone (ADH) is a hormone that affects the volume of urine produced. cribe and explain the effect on the kidneys of a high concentration of antidiuretic none (ADH) in the blood.	[4]

© WJEC CBAC Ltd. (A400U30-1)

Turn over.

6. Multicellular animals have evolved different ways of ventilating their gas exchange surfaces. **Image 6.1** shows the thorax of a human (a mammal), **Image 6.2** shows a cross section through part of the head of a bony fish and **Image 6.3** shows the tracheal system in an insect.

Image 6.1

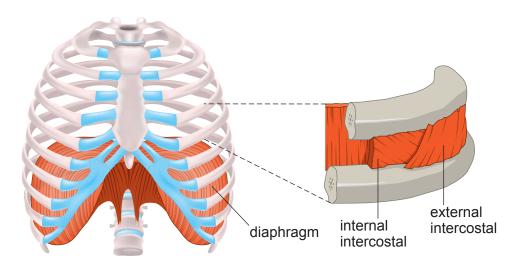
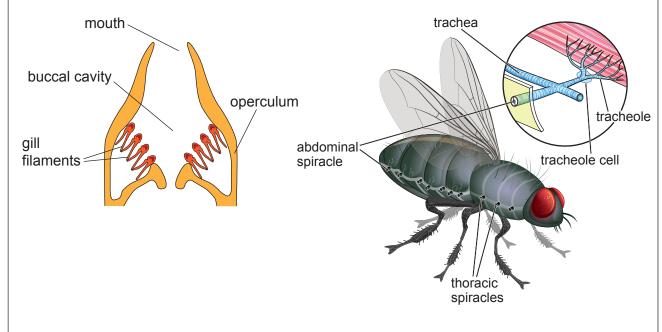



Image 6.2 Image 6.3

© WJEC CBAC Ltd.

Use the information lungs in a human an Describe the advant the gas exchange sy	ages and disadvan	tages of the in	sect tracheal sy	stem when cor	mpared to [9 QEF
					• • • • • • • • • • • • • • • • • • • •
				•••••	
				•••••	• • • • • • • • • • • • • • • • • • • •

© WJEC CBAC Ltd. (A400U30-1) Turn over.

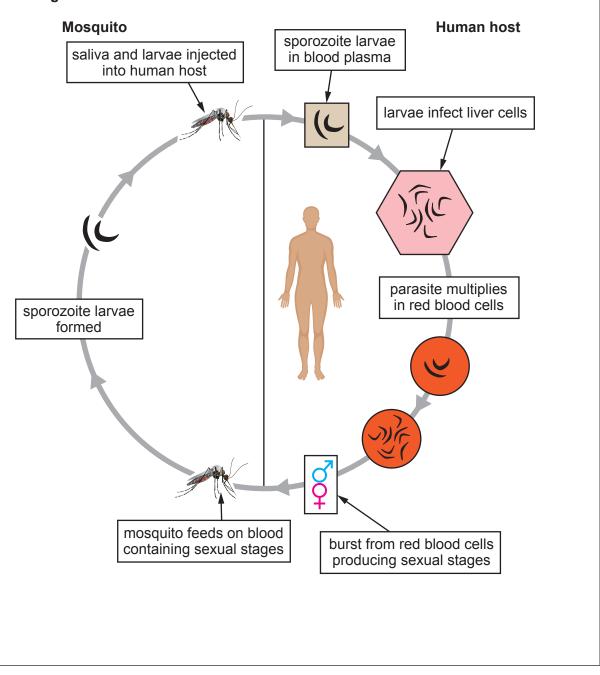
A400U301 21

	Examine only

	Examine only
	9

© WJEC CBAC Ltd.

SECTION B: OPTIONAL TOPICS				
Option A:	Immunology and Disease			
Option B:	Human Musculoskeletal Anatomy			
Option C:	Neurobiology and Behaviour			
Answer the	question on one topic only.			
Place a tick	(/) in one of the boxes above, to show w	hich topic you are answering.		
You are ad	vised to spend about 25 minutes on th	is section.		


Option A: Immunology and Disease

7. (a) Malaria is a disease caused by a protoctistan parasite belonging to the genus *Plasmodium*. The disease is caused mainly by two species of *Plasmodium* (*P. vivax* and *P. falciparum*) of which there are many antigenic types.

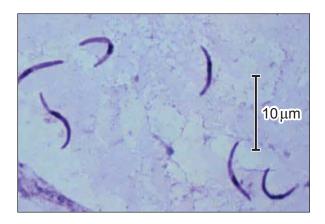
The life cycle of malaria consists of multiple stages within two host organisms; humans and the *Anopheles* mosquito. Some of these stages are free-swimming (for example, sporozoites) while other stages happen within human liver cells and red blood cells.

Image 7.1 shows the generalised life cycle of the malaria parasite.

Image 7.1

© WJEC CBAC Ltd.

		TEvamin
(i)	State the role of the mosquito in the life cycle of <i>Plasmodium</i> . [1]	Examine only
(ii) 	Explain why multiplying within liver cells and red blood cells helps the parasite to evade the host's immune system. [2]	
(iii)	The sexual stage involving meiosis helps to increase genetic variation within parasite populations. Explain why this means that a person may develop symptoms of malaria following re-infection. [3]	



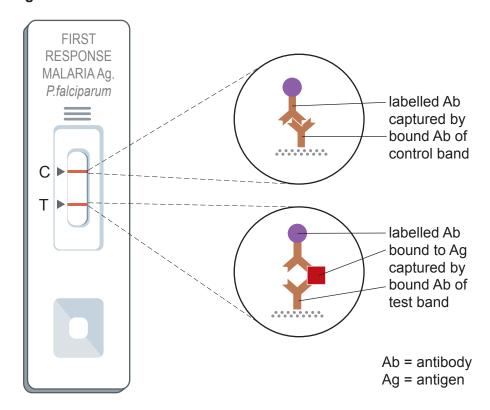
Turn over.

There is great interest in the development of a vaccine to prevent malarial infection. (b) One of the most promising candidates for a vaccine uses whole, live sporozoites which have been exposed to ionising radiation. Irradiating the sporozoites prevents them from replicating but does not affect the antigens they produce.

Image 7.2 shows a photomicrograph of *Plasmodium* sporozoites

Image 7.2

(i)	Use only the scale bar to calculate the magnification of Image 7.2.	[2]
	Magnification = ×	
(ii)	Use the information given about the life cycle of malaria and your own knowled	ge
	of the specific immune response to suggest why sporozoites are the life cycle stage chosen for the vaccine.	[2]
•••••		· · · · · · · · · · · · · · · · · · ·
•••••		
		· · · · · · · · · · · · · · · · · · ·
•••••		
(iii)	Explain why live irradiated sporozoites are used.	[1]
•••••		


very specific conditions: • 37 °C • low oxygen concentrations. Use information from Image 7.1 to suggest why Plasmodium sporozoites can only be cultured under these conditions. [3	(iv)	Plasmodium sporozoites can be cultured in human cells in the laboratory under
low oxygen concentrations. Use information from Image 7.1 to suggest why Plasmodium sporozoites can only be cultured under these conditions. [3]	()	very specific conditions:
Use information from Image 7.1 to suggest why <i>Plasmodium</i> sporozoites can only be cultured under these conditions.		
(v) Explain how vaccination can give long-term protection against disease. [2		Use information from Image 7.1 to suggest why <i>Plasmodium</i> sporozoites can only be cultured under these conditions.
(v) Explain how vaccination can give long-term protection against disease. [2	•••••	
(v) Explain how vaccination can give long-term protection against disease. [2		
(v) Explain how vaccination can give long-term protection against disease. [2		
(v) Explain how vaccination can give long-term protection against disease. [2		
(v) Explain how vaccination can give long-term protection against disease. [2	•••••	
(v) Explain how vaccination can give long-term protection against disease. [2	•••••	
(v) Explain how vaccination can give long-term protection against disease. [2		
(v) Explain how vaccination can give long-term protection against disease. [2		
(v) Explain how vaccination can give long-term protection against disease. [2	•••••	
	(v)	Explain how vaccination can give long-term protection against disease [2]
	(V)	Explain now vaccination can give long-term protection against disease.
	()	

Turn over.

An antigen test for malaria caused by *P. falciparum* is shown in **Image 7.3**. This type of test uses labelled antibodies specific to antigens found on the infecting parasite. These antigens will be present in a blood sample from an infected person. (c)

Image 7.3

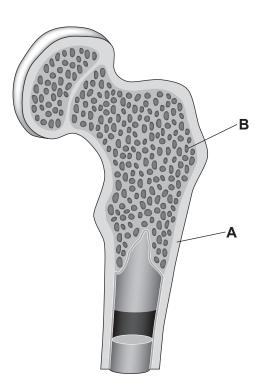
(i)	Explain what the test shown in Image 7.3 would look like if the blood sample wa from someone infected with <i>P. vivax</i> .	ıs [3]
• • • • • • • • • • • • • • • • • • • •		
•••••		
		· • • • •
•••••		· • • • •

(ii)	Explain why penicillin would not be effective against malaria.	[1]

Option B: Human Musculoskeletal Anatomy

8. Image 8.1 shows a photomicrograph of a section taken from the trachea.

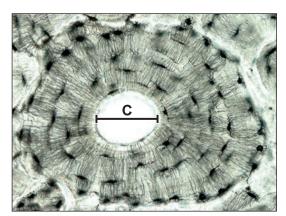
Image 8.1



(a)	 (i) Identify the cells present in the hyaline cartilage shown in Image 8. how nutrients and oxygen are supplied to these cells. 				
	•••••				
	······				
	(ii)	Describe the role of hyaline cartilage in the trachea.	[1]		
	•••••				

(b) Image 8.2 shows a longitudinal section through the head of a femur.

Image 8.2


(1)	Identify the type of bone labelled A on Image 8.2 .	[1]
(ii)	The tissue at B is known as cancellous spongy bone. It has many spaces know as trabeculae. This tissue is not as strong as the bone tissue at A . Cancellous bone comprises around 20% of the volume of long bones such as the femur.	/n
	Suggest the benefit of this type of bone tissue in the human skeleton. Explain your answer.	[2]

© WJEC CBAC Ltd. (A400U30-1) Turn over.

Image 8.3 shows a highly magnified section of tissue A.

Image 8.3

 $magnification \times 200$

(iii)	Use line C to calculate the width of the Haversian canal from Image 8.3 .	
, ,	State your answer in μm.	[2]

Width =		μm
---------	--	----

(IV)	Describe the role of the Haversian canal in bone.	IJ

© WJEC CBAC Ltd.

(A400U30-1)

(c) Images 8.4A and 8.4B show two X-ray images of the knee joint.

Image 8.4A

Image 8.4B

Knee of patient

(i) State the type of synovial joint shown in **Image 8.4B**.

[1]

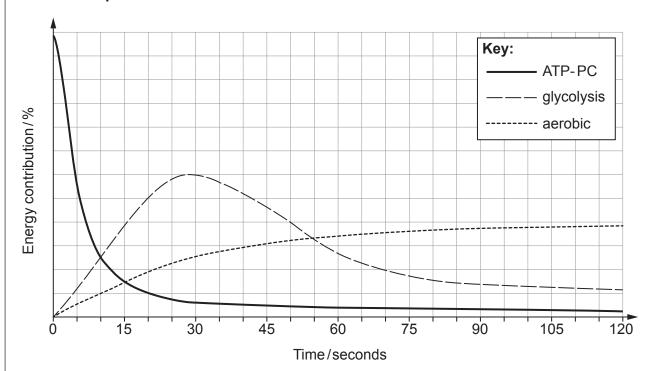
(ii) I. **Image 8.4A** shows the knee joint of a patient who was otherwise generally healthy.

Suggest how **Image 8.4A** shows arthritis.

[1]

II. The patient was 27 years old. Their weight was within normal range but they had low levels of physical activity. The patient's knee was swollen and warm to the touch. The patient was in a great deal of pain and had difficulty walking.

Use all the information provided to suggest why a diagnosis of rheumatoid arthritis was made rather than osteoarthritis. [2]



© WJEC CBAC Ltd. (A400U30-1) Turn over.

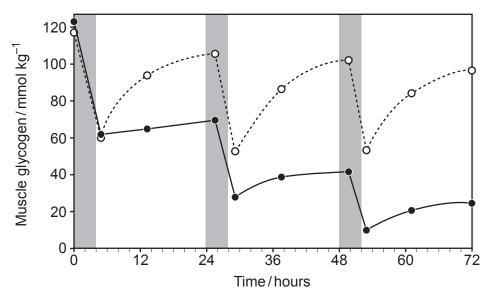
[2]

(d) The energy for muscle contraction may be obtained from one of three different energy systems as shown on **Graph 8.5**.

Graph 8.5

(i) With reference to **Graph 8.5**, suggest which of the three systems would provide the greatest percentage energy contribution in athletes performing each of the following activities. Explain your answers.

II. a 5-ł	kilometre race.		[2]
II. a 5-ł	kilometre race.	 	[2]
II. a 5-ł	kilometre race.		[2]
II. a 5-ł	kilometre race.		[2]


© WJEC CBAC Ltd.

I. a 100-metre sprint;

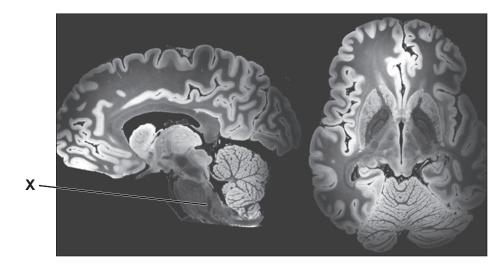
(A400U30-1)

Glycogen is the main carbohydrate storage compound in muscle cells. **Graph 8.6** shows the results of an experiment where two athletes were given standard daily training bouts and their muscle glycogen levels were then measured regularly over 72 hours. One athlete was given a carbohydrate loading diet while the other was given a normal diet with no carbohydrate loading.

Graph 8.6

Key: carbohydrate loading diet	normal diet	training bout (4 hours)
--------------------------------	-------------	-------------------------

(ii)	Explain why the intensity and duration of training bouts were controlled in this experiment.	[1]
(iii)	With reference to Graph 8.6 explain how carbohydrate loading might improve a athlete's performance.	an [2]


Turn over.

20

Option C: Neurobiology and Behaviour

9. Image 9.1 shows two computerised tomography (CT) scans of the same brain.

Image 9.1

(a)	(i) Account for the different appearance of the brain in the two scans.				
	(ii)	Identify structure X on Image 9.1 .	[1		
	(iii)	Structure X is part of the autonomic nervous system. Describe the function of the autonomic nervous system.	[1		
					

38

Image 9.2 shows an electron micrograph of a single neurone from a human brain showing many connections to other neurones.

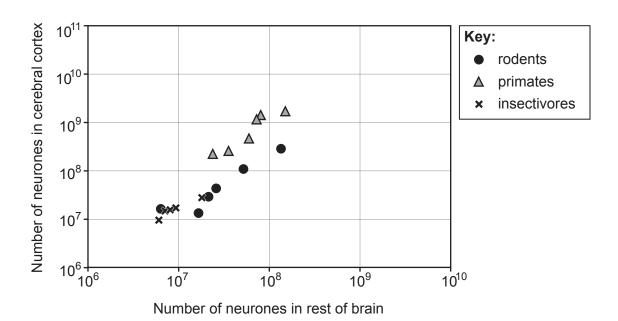
Image 9.2

magnification × 1800

(iv)	Calculate the actual diameter of the cell body of the neurone in Image 9.2 alon	ıg
	the line shown. State your answer in µm.	[2]

Г)iame	ter =	и	m	٦
_	riairic	LCI	 μ		•

(v) Following damage to the brain, there can be changes in neural pathways by establishing new connections between neurones.
State the term used to describe these changes. [1]



© WJEC CBAC Ltd. (A400U30-1) Turn over.

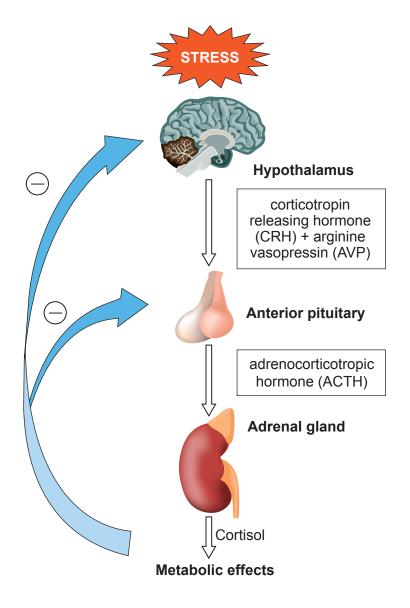
(b) An investigation was carried out into the relationship between the number of neurones in the cerebral cortex compared to the rest of the brain in different mammals. Researchers examined the brains of six species of primate (including apes and monkeys), six species of rodent (including rats and mice) and five species of insectivore (including shrews, moles and hedgehogs).

Graph 9.3 shows the relationship between the number of neurones in the cerebral cortex compared to the rest of the brain in the three different groups of mammals.

Graph 9.3

(i)	Describe the general trend for the mammals shown in Graph 9.3 .	[1]

© WJEC CBAC Ltd.


(A400U30-1)

(ii)	Primates generally exhibit complex social behaviours such as imitation and insight. They are capable of higher levels of cognitive functioning than the other groups of mammals in this study.
	The researchers concluded that these behaviours are linked to the relative number of neurones in the cerebral cortex. Explain how the data supports their conclusion.
•••••	
•••••	
•••••	

•••••	

(c) Cortisol is produced by the adrenal glands in response to stress via the pathway shown in **Image 9.4**.

Image 9.4

(i)	Use Image 9.4 and your knowledge of cortisol production to describe and explain the effect on this pathway of increasing cortisol concentrations in the blood. [3]
••••	
•••••	
(ii)	Suggest the benefit of the response described in Image 9.4 . [1]
•••••	
(iii)	Some individuals have an unusually high concentration of corticotropin releasing
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful
(iii)	hormone in their bloodstreams. Suggest a possible life event that may have caused such raised levels and explain how these raised levels would affect the way such individuals respond to stressful

20

(d) Black grouse are ground nesting birds found on moorland. Incubation of the eggs and care of the young is carried out by the female. Several black grouse males perform elaborate displays before groups of females in a ritual known as a lek. The male birds compete for the attention of the female birds.

Image 9.5 shows a female (left) and male (right) black grouse.

Image 9.5

(i)	Use evidence from Image 9.5 to explain how this species shows sexual dimorphism.	[1]
(ii)	Use all the information provided to identify the two types of selection that have resulted in sexual dimorphism in black grouse. Explain each answer.	[3]
•••••		
•••••		
• • • • • • • • • • • • • • • • • • • •		

END OF PAPER

11

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only
		1

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

© WJEC CBAC Ltd.

(A400U30-1)

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

